top of page
森の木

原著論文 Articles in peer-reviewed journals

*は責任著者 (Corresponding author)

  1. *Stankowski, S., Cutter, A. D., Satokangas, I., Lerch, B. A., Rolland, J., Smadja, C. M., Marzal, J. C. S., Cooney, C. R., Feulner, P. G. D., Domingos, F. M. C. B., North, H. L., Yamaguchi, R., Butlin, R. K., Wolf, J. B. W., Coughlan, J., Heidbreder, P., Hernández-Gutiérrez, R., Barnard-Kubow, K. B., Peede, D., Rancilhac, L., Salvador, R. B., Thompson, K. A., Stacy, E. A., Moyle, L. C., Garlovsky, M. D., Maulana, A., Kantelinen, A., Cacho, N. I., Schneemann, H., Domínguez, M., Dopman, E. B., Lohse, K., Rometsch, S. J., Comeault, A. A., Merrill, R. M., Scordato, E. S.C., Singhal, S., Pärssinen, V., Lackey, A. C. R., Kumar, S., Meier, J. I., Barton, N., Fraïsse, C., Ravinet, M., Kulmuni, J. 2024. Toward the integration of speciation research. Evolutionary Journal of the Linnean Society 3: kzae001
     

  2. Sunagawa, J., Park, H., Kim, K. S., Komorizono, R., Choi, S., Ramirez Torres, L., Woo, J., Jeong, Y. D., Hart, W.S., Thompson, R.N., Aihara, K., *Iwami, S., and *Yamaguchi, R. 2023. Isolation may select for earlier and higher peak viral load but shorter duration in SARS-CoV-2 evolution. Nature Communications 14: 7395.
    Top 25 Nature Communications COVID-19 Articles of 2023
     

  3. *Kumakura, D., Yamaguchi, R., Hara, A., and Nakaoka, S. 2023. Disentangling the growth curve of microbial culture. Journal of Theoretical Biology 111597.
     

  4. Sunagawa, J., Komorizono, R., Park, H., Hart, W.S., Thompson, R.N., Makino, A., Tomonaga, K., *Iwami, S., and *Yamaguchi, R. 2023. Contact-number-driven virus evolution: A multi-level modeling framework for the evolution of acute or persistent RNA virus infection. PLOS Computational Biology 19: e1011173.
     

  5. *Kyogoku, D., and Yamaguchi, R. 2023. Males and females contribute differently to the evolution of habitat segregation driven by hybridization. Journal of Evolutionary Biology 2023;00:1–14.
     

  6. *Yamaguchi, R. Wiley B., and Otto, S.P. 2022. The phoenix hypothesis of speciation. Proc. Roy. Soc. B 289: 20221186
     

  7. *Yamaguchi, R. 2022. Intermediate dispersal hypothesis of species diversity: new insights. Ecological Research 37, 301-315. (Award paper: the seventh Suzuki Award at the 66th Annual Meeting of the Ecological Society of Japan)
     

  8. *Sunagawa, J., Yamaguchi, R., and Nakaoka, S. 2022. Evolving Neural Networks through Bio-inspired Parent Selection in Dynamic Environments. BioSystems 218, 104686.
     

  9. *Matsubayashi, K. W., and Yamaguchi, R. 2022. Adaptive and non‐adaptive causes of radiation: Is adaptation a harsh mistress of diversity? Population Ecology 64, 93–94.
     

  10. *MacPherson, A., Wang, S., Yamaguchi, R., Rieseberg, L.H., and Otto, S.P. 2022. Parental population range expansion before secondary contact promotes heterosis. The American Naturalist 200, E1-E15.
     

  11. *Yamaguchi, R. and Matsubayashi, K.W. 2022. Reply to Kagawa’s comment: Quantifying mixture modes of evolutionary radiations. Population Ecology 64, 127–129.
     

  12. *Matsubayashi, K.W. and Yamaguchi, R. 2022. The speciation view: Disentangling multiple causes of adaptive and nonadaptive radiation in terms of speciation. Population Ecology 64, 95–107.
     

  13. *Yamaguchi, R., Iwasa, Y., and  Tachiki Y. 2021. Recurrent speciation rates on islands decline with species number. Proc. Roy. Soc. B  288: 20210255.
     

  14. *Yamaguchi, R. and Otto, S.P. 2020. Insights from Fisher's geometric model on the likelihood of speciation under different histories of environmental change. Evolution 74: 1603-1619.
    Top cited article 2020-2021

     

  15. Lee, JH, Yamaguchi, R., Yokomizo, H., and * Nakamaru, M. 2020. Preservation of the value of rice paddy fields: Investigating how to prevent farmers from abandoning the fields by means of evolutionary game theory. Journal of Theoretical Biology 110247.
     

  16. *Nakahara, T., Horita, J., Booton, R.D., and  Yamaguchi, R. 2020. Extra molting, cannibalism and pupal diapause under unfavorable growth conditions in Atrophaneura alcinous (Lepidoptera: Papilionidae). Entomological Science 23: 57-65.
     

  17. *Yamaguchi, R., Yamanaka, T. and Liebhold, A.M. 2019. Consequences of hybridization during invasion on establishment success. Theoretical Ecology 1-9.
     

  18. *Booton, R., Yamaguchi, R., and Iwasa, Y. 2019. A population model for diapausing multivoltine insects under asymmetric cannibalism. Population Ecology 61: 35-44.
     

  19. *Yamaguchi, R., Suefuji, S., Odagiri K., Peggie D., and Yata O. 2018. A color pattern difference in the fifth instar larva of two subspecies of Faunis menado Hewitson (Lepidoptera, Nymphalidae). Lepidoptera Science 69: 67-73.
     

  20. *Booton, RD, Yamaguchi, R., Marshall, J.A.R., Childs, D.Z., and Iwasa, Y. 2018. Interactions between immunotoxicants and parasite stress: implications for host health. Journal of Theoretical Biology 445: 120-127.
     

  21. *Yamaguchi, R. and Iwasa, Y. 2017. A tipping point in parapatric speciation. Journal of Theoretical Biology 421: 81-92.
     

  22. *Yamaguchi, R. and Iwasa, Y. 2017. Parapatric speciation in three islands: dynamics of Geographic configuration of allele sharing. Royal Society Open Science 4: 160819.
     

  23. *Yamaguchi, R. , Suefuji, S., Odagiri K., and Yata O. 2016. The endemic Sulawesi amathusiine Faunis menado Hewitson (Lepidoptera, Nymphalidae) is divisible into two morphospecies. Lepidoptera Science 67: 12-21.
     

  24. *Yamaguchi, R. and Iwasa, Y. 2016. Smallness of the number of incompatibility loci can facilitate parapatric speciation. Journal of Theoretical Biology 405: 36-45.
     

  25. Yamaguchi, R. and *Iwasa, Y. 2015. Reproductive interference can promote recurrent parapatric speciation. Population Ecology 57: 343-346.
     

  26. *Yamaguchi, R. and Iwasa, Y. 2013. Reproductive character displacement by the evolution of female mate choice. Evolutionary Ecology Research 15: 25-41.
     

  27. *Yamaguchi, R. and Iwasa, Y. 2013. First passage time to allopatric speciation. Interface Focus 3: 20130026.

総説・解説

  1. *山口諒. 2023. 固有種数でみる東南アジア島嶼部のチョウ類多様性. 昆虫と自然. 58: 31-34.
     

  2. *山口諒. 2022. チョウの生殖隔離と種分化. 昆虫と自然. 57: 28-32.
     

  3. *山口諒. 2021. スラウェシの固有な蝶相. 昆虫と自然. 56: 13-17.
     

  4. *山口諒, 松林圭. 2019. 種の境界:進化学と生態学、分子遺伝学から種分化に迫る. 日本生態学会誌. 69: 145-149.
     

  5. *山口諒. 2019. 種分化ダイナミクスと数理モデル-生殖隔離進化の促進要因を探る-. 日本生態学会誌. 69: 151-169.
     

  6. *山口諒, Vane-Wright, R. I. 2017. スラウェシ地域のチョウと多様化: メナドヒメワモンの複雑な亜種構成. 昆虫と自然. 52: 9-14.
     

  7. *堀田淳之介, 中原亨, 山口諒. 2016. ジャコウアゲハByasa alcinousの休眠誘起. 昆虫と自然. 51: 21-23.
     

  8. *山口諒. 2015. スラウェシの生物地理とワモンチョウ族. 昆虫と自然. 50: 4-8.
     

  9. *山口諒, 末藤清一, 小田切顕一. 2013. メナドヒメワモンFaunis menadoの分類学的再検討. 昆虫と自然. 48: 28-31.
     

  10. *山口諒. 2012. スラウェシ島中南部におけるチョウ相調査. 昆虫と自然. 47: 25-29.

書籍

  1. 山口諒. 2024. 新たな種はどのようにできるのか?―生物多様性の起源をもとめて― 共立出版. 176pp.
     

  2. Grant, P. R. and Grant B. R. (原著), 巌佐庸(監訳), 山口諒(訳). 2017. なぜ・どうして種の数は増えるのか: ガラパゴスのダーウィンフィンチ. 共立出版. 223pp.

スクリーンショット 2024-03-23 21.23.58.png
bottom of page