top of page
森の木

原著論文 Articles in peer-reviewed journals

*は責任著者 (Corresponding author)

  1. *Kyogoku, D., and Yamaguchi, R. 2023. Males and females contribute differently to the evolution of habitat segregation driven by hybridization. Journal of Evolutionary Biology. 2023;00:1–14.
     

  2. *Yamaguchi, R. Wiley B., and Otto, S.P. 2022. The phoenix hypothesis of speciation. Proc. Roy. Soc. B 289: 20221186
     

  3. *Yamaguchi, R. 2022. Intermediate dispersal hypothesis of species diversity: new insights. Ecological Research 37, 301-315. ( Award paper: the seventh Suzuki Award at the 66th Annual Meeting of the Ecological Society of Japan)
     

  4. *Sunagawa, J., Yamaguchi, R., and Nakaoka, S. 2022. Evolving Neural Networks through Bio-inspired Parent Selection in Dynamic Environments. BioSystems 218, 104686.
     

  5. *Matsubayashi, K. W., and Yamaguchi, R. 2022. Adaptive and non‐adaptive causes of radiation: Is adaptation a harsh mistress of diversity? Population Ecology 64, 93–94.
     

  6. *MacPherson, A., Wang, S., Yamaguchi, R., Rieseberg, L. H., and Otto, S. P. 2022. Parental population range expansion before secondary contact promotes heterosis. The American Naturalist 200, E1-E15.
     

  7. *Yamaguchi, R., and Matsubayashi, K. W. 2022. Reply to Kagawa’s comment: Quantifying mixture modes of evolutionary radiations. Population Ecology 64, 127–129.
     

  8. *Matsubayashi, K. W., and Yamaguchi, R. 2022. The speciation view: Disentangling multiple causes of adaptive and nonadaptive radiation in terms of speciation. Population Ecology 64, 95–107.
     

  9. *Yamaguchi, R., Iwasa, Y., and Tachiki Y. 2021. Recurrent speciation rates on islands decline with species number. Proc. Roy. Soc. B 288: 20210255.
     

  10. *Yamaguchi, R. and Otto, S.P. 2020. Insights from Fisher’s geometric model on the likelihood of speciation under different histories of environmental change. Evolution 74: 1603-1619.
     

  11. Lee, J. H., Yamaguchi, R., Yokomizo, H., and *Nakamaru, M. 2020. Preservation of the value of rice paddy fields: Investigating how to prevent farmers from abandoning the fields by means of evolutionary game theory. Journal of Theoretical Biology 110247.
     

  12. *Nakahara, T., Horita, J., Booton, R. D., and Yamaguchi, R. 2020. Extra molting, cannibalism and pupal diapause under unfavorable growth conditions in Atrophaneura alcinous (Lepidoptera: Papilionidae). Entomological Science 23: 57-65.
     

  13. *Yamaguchi, R., Yamanaka, T. and Liebhold, A. M. 2019. Consequences of hybridization during invasion on establishment success. Theoretical Ecology 1-9.
     

  14. Booton, R., Yamaguchi, R., and Iwasa, Y. 2019. A population model for diapausing multivoltine insects under asymmetric cannibalism. Population Ecology 61: 35-44.
     

  15. *Yamaguchi, R., Suefuji, S., Odagiri K., Peggie D. and Yata O. 2018. A color pattern difference in the fifth instar larva of two subspecies of Faunis menado Hewitson (Lepidoptera, Nymphalidae). Lepidoptera Science 69: 67-73.
     

  16. *Booton, R. D., Yamaguchi, R., Marshall, J. A. R., Childs, D. Z. and Iwasa, Y. 2018. Interactions between immunotoxicants and parasite stress: implications for host health. Journal of Theoretical Biology 445: 120-127.
     

  17. *Yamaguchi, R. and Iwasa, Y. 2017. A tipping point in parapatric speciation. Journal of Theoretical Biology 421: 81-92.
     

  18. *Yamaguchi, R. and Iwasa, Y. 2017. Parapatric speciation in three islands: dynamics of Geographic configuration of allele sharing. Royal Society Open Science 4: 160819.
     

  19. *Yamaguchi, R., Suefuji, S., Odagiri K. and Yata O. 2016. The endemic Sulawesi amathusiine Faunis menado Hewitson (Lepidoptera, Nymphalidae) is divisible into two morphospecies. Lepidoptera Science 67: 12-21.
     

  20. *Yamaguchi, R. and Iwasa, Y. 2016. Smallness of the number of incompatibility loci can facilitate parapatric speciation. Journal of Theoretical Biology 405: 36-45.
     

  21. Yamaguchi, R. and *Iwasa, Y. 2015. Reproductive interference can promote recurrent parapatric speciation. Population Ecology 57: 343-346.
     

  22. *Yamaguchi, R. and Iwasa, Y. 2013. Reproductive character displacement by the evolution of female mate choice. Evolutionary Ecology Research 15: 25-41.
     

  23. *Yamaguchi, R. and Iwasa, Y. 2013. First passage time to allopatric speciation. Interface Focus 3: 20130026.

総説・解説

  1. *山口諒. 2022. チョウの生殖隔離と種分化. 昆虫と自然. 57: 28-32.
     

  2. *山口諒. 2021. スラウェシの固有な蝶相. 昆虫と自然. 56: 13-17.
     

  3. *山口諒, 松林圭. 2019. 種の境界:進化学と生態学、分子遺伝学から種分化に迫る. 日本生態学会誌. 69: 145-149.
     

  4. *山口諒. 2019. 種分化ダイナミクスと数理モデル-生殖隔離進化の促進要因を探る-. 日本生態学会誌. 69: 151-169.
     

  5. *山口諒, Vane-Wright, R. I. 2017. スラウェシ地域のチョウと多様化: メナドヒメワモンの複雑な亜種構成. 昆虫と自然. 52: 9-14.
     

  6. *堀田淳之介, 中原亨, 山口諒. 2016. ジャコウアゲハByasa alcinousの休眠誘起. 昆虫と自然. 51: 21-23.
     

  7. *山口諒. 2015. スラウェシの生物地理とワモンチョウ族. 昆虫と自然. 50: 4-8.
     

  8. *山口諒, 末藤清一, 小田切顕一. 2013. メナドヒメワモンFaunis menadoの分類学的再検討. 昆虫と自然. 48: 28-31.
     

  9. *山口諒. 2012. スラウェシ島中南部におけるチョウ相調査. 昆虫と自然. 47: 25-29.

翻訳書籍

  1. Grant, P. R. and Grant B. R. (原著), 巌佐庸(監訳), 山口諒(訳). 2017. なぜ・どうして種の数は増えるのか: ガラパゴスのダーウィンフィンチ. 共立出版. 223pp.

bottom of page